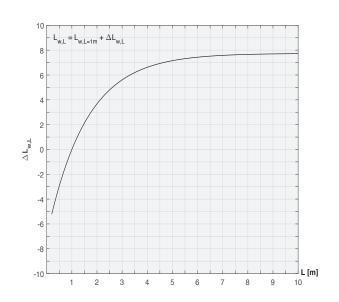


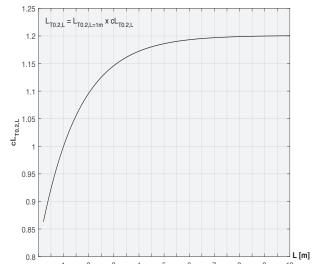
Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser FACT Auslegungsprogramm.

ABLUFT

SCHALLLEISTUNGSPEGEL, DRUCKVERLUST



Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**



KORREKTURFAKTOREN

KORREKTUR DES SCHALLLEISTUNGSPEGELS FÜR EIN GITTER MIT LÄNGE L

GEOMETRISCHEN LUFTAUSTRITTSFLÄCHE AF. ZULUFT/AUSWAHL

A _f [m ²]	L [MM]								
H [mm]	200	300	400	500	600	700	800	1000	1200
50	0,0032	0,0048	0,0064	0,0081	0,0097	0,0113	0,0129	0,0161	0,0193
75	0,0060	0,0090	0,0120	0,0149	0,0179	0,0209	0,0239	0,0299	0,0359
100	0,0087	0,0131	0,0175	0,0218	0,0262	0,0306	0,0349	0,0437	0,0000
150	0,0143	0,0214	0,0285	0,0356	0,0428	0,0499	0,0570	0,0713	0,0855
200	0,0198	0,0297	0,0395	0,0494	0,0593	0,0692	0,0791	0,0988	0,1186
250	0,0253	0,0379	0,0506	0,0632	0,0759	0,0885	0,1011	0,1264	0,1517
300	0,0308	0,0462	0,0616	0,0770	0,0924	0,1078	0,1232	0,1540	0,1848

Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**

AUSWAHLBEISPIEL

Bekannte Daten		
Volumenstrom, Q _v	[m³/h]	2000
Temperatur Zuluft, T ₀	[°C]	18
Temperatur Raumluft, T _r	[°C]	26
Länge des Luftauslasses, L	[mm]	2000
maximal zulässiger Schalldruckpegel, L _p	[dB(A)]	35
akustische Raumdämpfung, ΔL_{r}	[dB(A)]	8
maximale Luftgeschwindigkeit in der Komfortzone	[m/s]	0,2

Auswahl mittels Graphen		
Volumenstrom für Länge L = 1000 mm	[m³/h/m]	1000
Akustik		
geforderter maximaler Schallleistungspegel, $L_{w,L}$ (= $Lp + \Delta L_r$)	[dB(A)]	43
geforderter maximaler Schallleistungspegel für Länge L, $\Delta L_{w,L}$	[dB(A)]	3,7
geforderter maximaler Schallleistungspegel für Länge L = 1000 mm, L _{w,L=1m}	[dB(A)]	39,3
Vorschlag für Gitterhöhe, H	[mm]	150
Druckverlust		
Gesamtdruckverlust, ΔP_{tot}	[Pa]	8
Geschwindigkeit		
Korrekturfaktor für den Strahlweg, cL _{T0.2,L}	[-]	1,096
Strahlweg für Länge L = 1000 mm, L _{T0.2,L=1m}	[m]	15,2
Strahlweg für Länge L = 2000 mm, $L_{T0.2,L}$ (= $L_{T0.2,L=1m} \times cL_{T0.2,L}$)	[m]	16,7
Luftaustrittsfläche A_f (= $A_{f,L=1m} \times L/1000$)	[m²]	0,1425
Ausblasgeschwindigkeit V_f , Q_v/A_f (oder mittels Graphen)	[m/s]	3,9
Temperatur		
Temperaturkoeffizient (d $L_{T0.2,L=1m}$, $\Delta T_x/\Delta T_0$	[-]	0,108
Temperaturkoeffizient @ $L_{T0.2,L}$, $\Delta T_x/\Delta T_0$ x c $L_{T0.2,L}$	[-]	0,118
>Temperatur $T_x = T_a - (\Delta T_x / \Delta T_0 \times cL_{T_0.2,L})[T_a - T_0]$	[°C]	25,1

ZEICHENERKLARUNG

Zeichen	Einheit	
ΔP _{tot}	[Pa]	Gesamtdruckverlust
Q _V	[m³/h/m] / [l/s/m]	Volumenstrom für einen Luftauslass mit eine Länge von 1 m
ΔT_{x}	[K]	Differenz zwischen Raum- und Strahltemperatur in Entfernung x
ΔT_0	[K]	Temperaturdifferenz zwischen Raumluft und Zuluft
L _w	[NR] / [dB(A)]	Schallleistungspegel
L _{T0.2}	[m]	Länge des Strahls bei einer Strahlmittengeschwindigkeit von 0,2 m/s
Х	[m]	Abstand ab der Mitte des Luftauslasses gemessen
L	[m]	Länge des Luftauslasses
$L_{W,L}$	[NR] / [dB(A)]	Schallleistungspegel für einen Luftauslass mit Länge L
$\Delta L_{W,L}$	[NR] / [dB(A)]	Korrektur Schallleistungspegel für einen Luftauslass mit Länge L im Vergleich zu der Länge von 1 m
L _{T0.2,L}	[m]	Länge des Strahls bei einer Strahlmittengeschwindigkeit von 0,2 m/s für einen Luftauslass mit Länge L
cL _{T0.2,L}	[m]	Korrekturfaktor für die Länge des Strahls bei einer Strahlmittengeschwindigkeit von 0,2 m/s für einen Luftauslass mit Länge L